Advances in Rehabilitation of the Throwing Athlete

Introduction

It is a "whipping" action that brings the hand and eventually the ball to a speed of 90 to 100 mph.

Elite level is 87 MPH
(Football is 55 MPH)

Biomechanics and Kinematics

Stride
- Occurs when hands break (knee at high point) to the point the lead leg (stride leg) is planted.
 - Foot pointed straight ahead.
 - Planted just off midline
- Body is rotated and moves forward by push from stance or push leg
- Elite throwers stride length is .73 (Greater in other studies) Body Height

Biomechanics and Kinematics

- Early Cocking
 - Hips "square up" toward target.
 - Arm position at end of stride
 - Abduction is 90-100º
 - Elbow is 90º
 - Injury potential is low in this phase

Biomechanics and Kinematics

- Range of Motion (End of Cocking Phase)
 - 180º of external rotation (combination of spinal hyperextension, scapular movement, and glenohumeral movements)
 - 90-100º of abduction at the glenohumeral joint
 - 20-30º of horizontal abduction at the glenohumeral joint
 - 90º elbow flexion
- Elite level have 185 degrees MER
- NFL QB have 158 degrees MER
- 125 msec from stride foot contact to MER

Biomechanics and Kinematics

 - Total ROM WNL in both groups
- Throwers had more ER in dominant arm and more IR in the non-dominant arm
 - 7 Degrees
- Throwers had significant humeral head retroversion
- Equal anterior and posterior laxity.

Biomechanics and Kinematics

- **Forces (End of Cocking)**
 - Due to centrifugal force of the whipping motion, the glenohumeral joint is trying to distract. The body will produce a compression force to counteract this at 800N @ 200lbs.
 - Also during this time, due to the horizontal abduction and corresponding arthrokinematics of the glenohumeral joint, there will be a stress on the anterior capsule for anterior translation of 400N @ 100 lbs.
 - As the trunk turns toward the plate, the horizontal adductors fire producing a horizontal adduction torque of 70 Nm.

Biomechanics and Kinematics

Arm Acceleration

- Maximum external rotation of glenohumeral joint to ball release (@ .25 msec).
 - Horizontal Add to Elbow Extension to Internal Rotation
 - Range of Motion
 - **Shoulder**
 - 180° external rotation to 70-90° of external rotation
 - 90-100° adduction
 - 20-30° horizontal abduction to 0° horizontal abduction
 - **Elbow**
 - 90 to 30-25° flexion

Biomechanics and Kinematics

- **Forces (Acceleration Phase)**
 - **Shoulder**
 - Internal rotation at 8000°/sec=60Nm (Football=3000)
 - Horizontal adduction at 7000°/sec
 - Glenohumeral joint compression
 - **Elbow**
 - Extension at 2500°/sec (FB=1500)
 - Varus torque (to resist valgus force) of 135 Nm (FB=110)
 - 54% from ulnar collateral ligament
 - 33% from the radiocapitellum joint
 - 13% from the posterior medial elbow

Biomechanics and Kinematics

- **Elbow flexion torque to resist the extension**
 - 60Nm
 - Provided by biceps, brachialis, and brachioradialis
 - **Wrist**
 - Flexion at 2700 degrees/sec

- High injury potential

Biomechanics and Kinematics

Ball Release
Biomechanics and Kinematics

Arm Deceleration
- Ball release to arm across chest (@40ms)
- Range of Motion
 - From ball release near ear until hand is at midline
- Forces
 - The humerus must be slowed from 8000º/sec and be kept from distracting to the plate!
 - 800N of posterior shear force is produced to stop this
- High injury potential

Biomechanics and Kinematics
- Muscles under stress
 - Posterior rotator cuff
 - Supraspinatus
 - Infraspinatus
 - Teres Minor
- High injury potential

Underhand?
- Comparison of underhand and overhand pitching show similar joint speeds and loads for each motion.
 - During delivery or acceleration with the underhand pitch, the forces to resist distraction at the shoulder and elbow are the greatest
 - In the overhand pitch, this occurred during deceleration

Injury

Arm Acceleration
- Anterior capsule micro-trauma
- Secondary impingement
- Posterior impingement
- Muscles under stress
 - Horizontal adductors--pectoralis major
 - Internal rotators--pectoralis major, latissimus dorsi, subscapularis, and teres major
 - Triceps and biceps
 - Ancanues and wrist flexors
- Anterior superior glenoid labrum--"Shoulder Grinding Factor" and pull of long head of biceps on elbow deceleration
- Riseball affects superior labrum in windmill
- Stress on vertebra cause stress fractures in windmill

Injury

Arm Acceleration
- Humeral shaft stress
- "Valgus Extension Overload"
 - Medial elbow ligaments
 - Ulnar nerve
 - Radio-capitellum joint
 - Medial olecranon fossa
- Same for windmill
Injury
Arm Acceleration
- Humeral shaft stress
- "Valgus Extension Overload"
 - Medial elbow ligaments
 - Ulnar nerve
 - Radio-capitellum joint
 - Medial olecranon fossa
- Same for windmill

Injury
Arm Acceleration
- Humeral shaft stress
- "Valgus Extension Overload"
 - Medial elbow ligaments
 - Ulnar nerve
 - Radio-capitellum joint
 - Medial olecranon fossa
- Same for windmill

Injury
Arm Deceleration
- Rotator cuff tears
 - Supraspinatus
 - Infraspinatus
 - Teres Minor
- Capsular stress-posterior
- Biceps long head
- Superior glenoid labrum

Injury
Follow-through
- Injury potential
 - Being hit by a returned batted ball (pitcher is now only @55 feet from the batter at 125 MPM!)

Clinical Presentation
- Isokinetic
 - ER/IR @60-80%
 - Add @20-30% stronger on throwing side
 - Abd @5-10% stronger on throwing side
 - Abd/Add @66-72%
 - ER concentric strength equal bilaterally
 - IR 20% stronger on throwing side
Clinical Presentation
• Pitchers to control group
 – Throwing arm supraspinatus weaker than non-throwing side
 – Pitchers weaker in abd, supra, ER, and IR than control
 – PITCHING INSUFFICIENT TO PRODUCE STRENGTH GAINS AND MAY LEAD TO WEAKNESS

Clinical Presentation
• Laxity
 – Thrower’s Laxity
 ● Acquired?
 ● Congenital?
 – Bigliani et.al. AJSM 1997
 ● 61% of pitchers/47% position players had sulcus on throwing arm
 ● 100% position and 89% pitchers with sulcus on throwing side also had sulcus on opposite side
 – Humeral Retroversion or Tight Posterior Capsule

Treatment
• Exercise Positions:
 – Scapula
 ● Sitting dip
 ● Push-up with a plus
 ● Scaption
 ● Bent Row

Treatment
 – Rotator Cuff
 ● Prone horizontal abduction
 ● Prone external rotation
 – Others
 ● Shoulder shrugs
 ● Scapula adduction
 ● Triceps
 ● Biceps

Treatment
• Flexibility and Instability
 – Work in “safe” ROM/toward “unsafe”
 – Proprioception
• Flexibility
 – External rotation
 – Horizontal abduction
 – Internal rotation
– Horizontal adduction

Treatment
- Proprioception
 - Rhythmical stabilization
 - “Body Blade”/“Boing”
 - Inertial impulse/Inertial-less cable columns
- Monitored Rehabilitation Systems
- Closed Chain
 - Weight bearing
 - Ball

Return to Throwing
- Long and short toss
- Throw two days, rest one
- Gradually progress to working off the mound and then curve balls and finally fast ball

Return to Throwing
- Phase I Long Toss
 - To 90 Feet
- Phase 2 Long Toss
 - To 120 Feet
- Phase 3 Long Toss
 - To 150 Feet
- Phase 1 Short Toss
 - 30 Ft / 1/2 Speed
- Phase 2 Short Toss
 - 60 Ft / 1/2 Speed
- Phase 3 Short Toss
 - 60 Ft / 3/4 Speed

Return to Throwing
- Phase 4 Long Toss
 - To 180 Feet
- Phase 5 Long Toss
 - To 210 Feet
- Phase 6 Long Toss
 - To 250 Feet
- Phase 4 Short Toss
 - 60 Ft / 3/4 Speed / Mound
- Phase 5 Short Toss
 - 60 Ft / 3/4 Speed / Mound / Curve, etc.
- Phase 6 Short Toss
 - 60 Ft / 4/4 Speed / Mound / Game Sim
Treatment/Prevention
- Aerobic and anaerobic conditioning
- Leg strength
- Trunk strength
- Trunk rotation flexibility
- Throwing routines
- Cuff and Scapula routines

Surgical Considerations
- Labrum tears
 - Debridement
 - Symptomatic return to sport
 - Reconstruction
 - Three weeks before aggressive movement
 - Six weeks before aggressive strengthening
 - Twelve weeks before throwing

Injury Classification
- TYPE I
 - FRAYED AND DEGENERATED

Injury Classification
- TYPE II
 - LABRUM AND BICEPS TENDON IS AVULSED FROM LABRUM

Injury Classification
- TYPE III
 - VERTICAL TEAR IN CENTRAL AREA

Injury Classification
- TYPE IV
 - VERTICAL TEAR INTO BICEPS

Injury Classification
- TYPE V
 - SLAP extends to anterior inferior glenoid
 - Bankart/stabilize biceps anchor
- TYPE VI
 - SLAP with an unstable anterior flap
 - Debride flap/stabilize biceps anchor
• TYPE VII
 – SLAP extends into MGHL
 – Repair MGHL/stabilize biceps anchor

 • Maffet, Gartsman, Moseley, AJSM ’95

Surgical Considerations
• Rotator cuff tears
 – Partial tears with debridement/decompression
 • Symptomatic ROM and strengthening
 • Six weeks before throwing program
 – Reconstruction of complete tears
 • “Mini-Repair”
 – ROM immediately
 – Three weeks lift against gravity
 – Twelve weeks before throwing

Surgical Considerations
• Elbow
 – Ulnar Nerve Transposition
 – Medial elbow ligament repair/reconstruction
 – Debridment

Surgical Considerations
• Instability
 – Thermal stabilization

Surgical Considerations
• Baseball Players
 – Andrews: Traditional vs Traditional + TACS
 • F/U 1 yrs
 – 80% vs 90% return to competition
 • F/U 2 yrs
 – 67% vs 93% return to competition
 – 61% same or higher level vs 86%
 • Return at 7.2 vs 7.4 months

Surgical Considerations
• Toth et.al. / Krishman et.al. AOSSM 02
 – 31% failure rate/39% failure rate

Surgical Considerations
• Joseph et.al. AJSM Vol.31 No. 1
 – Thermal capsulorrhaphy may be effective for ‘acquired instability’ (17%) but not for other categories of instability such as traumatic (33%), and congenital MDI (60%)

Surgical Considerations
• Instability
 – Reconstruction: Open/Arthroscopic
 • Post-op positioning
 • ROM immediately
 • Strengthening symptomatically
 • Twelve weeks before throwing program

Surgical Considerations
• Rehabilitation in the safe positions
Little Leaguers
• Joe Chandler MD
 – Braves Pitchers
 • 9-10 start pitching
 • 11 start change-up
 • 14.6 start curve
 • 18.6 start slider
 – Little leaguers
 • 7-8 start pitching
 • 10 start change-up
 • 11.6 start curve
 • 14.5 start slider

Little Leaguers
• Joe Chandler MD
 – Numbers of pitches
 • 8-10 50 pitches
 • 11-14 75 pitches
 • 15-18 90-100 pitches
 – Routine
 • Two days rest
 • 50 pitches or 15 batters
 • Watch other activities!
 – “If you want to win, you have to throw a curve”-Little league coach in Atlanta.

Little Leaguers
• Olsen etal AJSM Vol. 34 2006: Risk Factors
• 95 Adolescent pitchers with elbow/shoulder surgery
• 45 with no significant injury
• Overuse and fatigue was the major factor
• Not instruction, exercise, age when pitched thrown, pitch type,
• Those injured pitched more months, more games, more innings, more pitches, more warm up, starting pitchers, more showcase games, higher velocity, pitched through more pain, used more anti-inflamatories and used more ice.
Recommended Minimum Rest after Pitching

<table>
<thead>
<tr>
<th>Age</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Days Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td>20</td>
<td>35</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>25</td>
<td>35</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>30</td>
<td>35</td>
<td>55</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>90</td>
<td>#Pitches</td>
</tr>
</tbody>
</table>

USA Baseball Medical/Safety

Maximum Pitches

<table>
<thead>
<tr>
<th>Age</th>
<th>Fastball</th>
<th>Change up</th>
<th>Curveball</th>
<th>Knuckleball</th>
<th>Slider</th>
<th>Forkball</th>
<th>Splitter</th>
<th>Screwball</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td>50 p/g</td>
<td>2 g/w</td>
<td>2 g/w</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11-12</td>
<td>65</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>75</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>90</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>105</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age to Learn Pitches

- Fastball: 8
- Change up: 10
- Curveball: 14
- Knuckleball: 15
- Slider: 16
- Forkball: 16
- Splitter: 16
- Screwball: 17

Summary